Numerical simulation of particle-laden turbulent channel flow

نویسندگان

  • Yiming Li
  • J. B. McLaughlin
چکیده

This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio, mass loading, and particle inertia will be discussed. The results were obtained from a numerical simulation that included the effects of particle feedback on the gas phase and particle–particle collisions. The resolution of the simulation was comparable to the smallest scales in the particle-free flow, but the grid spacings were larger than the particle size. Particle mass loadings up to 2 and both elastic and inelastic collisions were considered. Particle feedback causes the turbulent intensities to become more anisotropic as the particle loading is increased. For small mass loadings, the particles cause an increase in the gas flow rate. It will be shown that the particles tend to increase the characteristic length scales of the fluctuations in the streamwise component of velocity and that this reduces the transfer of turbulent energy between the streamwise component of velocity and the components transverse to the flow. Particle–particle collisions greatly reduce the tendency of particles to accumulate at the wall for the range of mass loadings considered. This was true even when the collisions were inelastic. © 2001 American Institute of Physics. @DOI: 10.1063/1.1396846#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow

A fully mesoscopic, multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is developed to perform particle-resolved direct numerical simulation (DNS) of wallbounded turbulent particle-laden flows. The fluid–solid particle interfaces are treated as sharp interfaces with no-slip and no-penetration conditions. The force and torque acting on a solid particle are computed by a local Galilean...

متن کامل

A Hybrid Stochastic-Deconvolution Model for Particle-laden LES

We develop a hybrid model for large-eddy simulation of particle-laden turbulent flow, which is a combination of the approximate deconvolution model for the resolved scales and a stochastic model for the sub-grid scales. The stochastic model is based on a priori results of direct numerical simulation of turbulent channel flow. In order to correctly predict the flux of particles towards the walls...

متن کامل

Application of DNS and LES to Dispersed Two-Phase Turbulent Flows

An overview and examples of the application of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) to prediction and the scientific study of dispersed, turbulent two-phase flows is presented. This contribution focuses on Eulerian-Lagrangian treatments in which dispersed phase properties are obtained from discrete particle trajectories. The scope of the approaches considered are on...

متن کامل

A multiscale model for dilute turbulent gas-particle flows based on the equilibration of energy concept

The objective of this study is to improve Eulerian-Eulerian models of particle-laden turbulent flow. We begin by understanding the behavior of two existing models—one proposed by Simonin von Kármán Institute of Fluid Dynamics Lecture Series, 1996 , and the other by Ahmadi Int. J. Multiphase Flow 16, 323 1990 —in the limiting case of statistically homogeneous particle-laden turbulent flow. The d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001